spa: A Semi-SupervisedRPackage for Semi-Parametric Graph-Based Estimation
نویسندگان
چکیده
منابع مشابه
spa: A Semi-Supervised R Package for Semi-Parametric Graph-Based Estimation
In this paper, we present an R package that combines feature-based (X) data and graph-based (G) data for prediction of the response Y . In this particular case, Y is observed for a subset of the observations (labeled) and missing for the remainder (unlabeled). We examine an approach for fitting Ŷ = Xβ̂ + f̂(G) where β̂ is a coefficient vector and f̂ is a function over the vertices of the graph. The...
متن کاملSemi-parametric estimation of shifts
AbstractWe observe a large number of functions differing from each other only by a translation parameter. While the main pattern is unknown, we propose to estimate the shift parameters using M -estimators. Fourier transform enables to transform this statistical problem into a semi-parametric framework. We study the convergence of the estimator and provide its asymptotic behavior. Moreover, we u...
متن کاملSemi-parametric estimation of the strategic goods (OPEC oil price)
In the global economy, crude oil is among the most important strategic goods that affects the performance of local and international markets. Prediction of the oil price has always been an important challenging topic in the global economy and producers and consumers have constantly been trying to improve their roll in the oil price changes and for many years OPEC has been one of the key players...
متن کاملConfidence Estimation for Graph-based Semi-supervised Learning
To select unlabeled example effectively and reduce classification error, confidence estimation for graphbased semi-supervised learning (CEGSL) is proposed. This algorithm combines graph-based semi-supervised learning with collaboration-training. It makes use of structure information of sample to calculate the classification probability of unlabeled example explicitly. With multi-classifiers, th...
متن کاملEstimation of semi-parametric additive coefficient model
In the multivariate regression setting, we propose a flexible varying coefficient model in which the regression coefficients of some predictors are additive functions of other predictors. Marginal integration estimators of the coefficients are developed and their asymptotic properties investigated. Under -mixing, it is found that the estimators of the parameters in the regression coefficients h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Statistical Software
سال: 2011
ISSN: 1548-7660
DOI: 10.18637/jss.v040.i10